• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

«Приятно думать, что найденные решения в перспективе могут помогать людям»

Университет Иннополис

Университет Иннополис
Фото: media.innopolis.university

В Университете Иннополис подвели итоги международного отраслевого онлайн-хакатона Global Al Challenge. В нем соревновались команды разработчиков в области создания новых материалов с применением искусственного интеллекта. Третье место заняла команда DrugANNs, в числе участников которой — студенты факультета компьютерных наук НИУ ВШЭ.

За победу в онлайн-конкурсе боролись 90 команд из 15 стран, а общий призовой фонд составил 1 миллион рублей. Задача заключалась в предсказании активности разных молекул против определенного белка вируса COVID-19. Команды должны были оценить, является ли молекула активной против белка, построить модель, которая умеет предсказывать такую активность, и сделать предсказания для тестового набора данных.

Герман Магай

«По описанию задача показалась нам интересной, — отмечает Герман Магай, аспирант ФКН ВШЭ по профилю «Теоретические основы информатики», участник команды DrugANNs. — И мы решили собрать команду. В течение двух недель старались регулярно созваниваться и делиться прогрессом друг с другом, распределяли задачи. Помогло занять призовое место то, что каждый в команде внес свой вклад, каждый был специалистом в своей области, и в сумме наши усилия дали хороший результат».

Максим Бекетов

Максим Бекетов, аспирант 2-го года кафедры высшей математики ВШЭ, — о задаче: «Данных по такой активности, реально полученных в лаборатории или же методами вычислительной химии, не так много. К тому же у одной молекулы, если она большая, есть, скажем так, экспоненциально много конфигураций ее составных частей в пространстве. Какие-то из них могут оказаться активными против белка, а какие-то — нет. Пространственная структура тут очень важна: белок дан в виде определенного кода, по которому можно понять ее 3D-модель, и у этой 3D-модели может оказаться несколько точек, куда молекула может "прилепиться" — и подействовать — или не "прилепиться"».

По мнению Максима, применение машинного обучения в биологических или медицинских задачах мотивирует к участию в подобных соревнованиях: «Приятно думать, что найденные решения в перспективе могут помогать людям. Но не меньше привлекает и то, что сейчас в этой области появляются методы, за которыми стоит красивая математика — эквивариантные графовые нейросети, нейросети на симплициальных комплексах как обобщениях графов и тому подобное».

Дмитрий Киселев

С Максимом согласен Дмитрий Киселев, аспирант образовательной программы «Компьютерные и информационные науки», 3-й курс, участник команды DrugANNs, который отметил, что применение графовых нейронных сетей  (GNN) является актуальным и быстро развивающимся направлением. «Последнее время GNN активно используют для решения задач в естественных науках, — говорит Дмитрий. — В частности, в химии для предсказания свойств молекул, их моделирования и т.д. Я давно хотел попробовать себя в этой области. Открытия в ней могут стать важными для всего общества, принести пользу». По его словам, задача предсказания активности молекул вполне известная, аналогичные соревнования проходят регулярно. «Я попробовал кучу репозиториев, модернизировал разные идеи, попытался совместить разные подходы, но хорошего качества добиться не удалось. В какой-то момент я даже расстроился и решил, что нужно глубже копать, — объясняет он. — Однако позже наши коллеги, химик и биоинформатик, помогли правильно предобработать данные, и все заработало».

Над задачей также активно работали участники команды из других университетов — химик, биоинформатик, специалисты по машинному обучению, в частности графовым нейросетям. Это позволило DrugANNs найти нужное решение и занять призовое место. «После завершения хакатона мы продолжаем общаться, — говорит Максим. — В том числе и по теме задачи хакатона: она всем нам интересна, мы хотели бы и далее в ней развиваться, участвовать в подобных хакатонах или пробовать силы в иных форматах».

Вам также может быть интересно:

«Когда мир стремительно меняется, важно искать инструменты управления изменениями»

В начале апреля в Высшей школе экономики в Москве состоялась XIX Всероссийская научная конференция с международным участием «Параллельные вычислительные технологии» (ПаВТ). Конференция ПаВТ — ежегодное научное мероприятие, которое проводится в крупных научных центрах России. Форум в НИУ ВШЭ объединил более 200 ученых из пяти стран. Участники конференции представляли 55 организаций из 28 городов, в том числе 15 институтов РАН и НИИ, 30 университетов, 8 предприятий ИТ-индустрии и 2 промышленных предприятия.

ВШЭ — лидер конкурсного отбора Минцифры России по подготовке кадров в области ИИ

Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации и Аналитический центр при Правительстве РФ завершили конкурсный отбор вузов, которые в 2025–2030 годах займутся подготовкой специалистов в сфере искусственного интеллекта. По итогам конкурсного отбора по программам высшего уровня «ТОП ДС» первое место заняла Высшая школа экономики.

Искусственный интеллект помогает точнее прогнозировать риски сложных заболеваний

Разработанные в Центре искусственного интеллекта НИУ ВШЭ нейросетевые модели значительно улучшают прогнозирование риска ожирения, диабета первого типа, псориаза и других многофакторных заболеваний. Совместное исследование с компанией Genotek показало, что алгоритмы глубокого обучения эффективнее традиционных методов, особенно при сложных взаимодействиях генов (эпистазах). Результаты опубликованы в журнале Frontiers in Medicine.

Искусственный интеллект может стать катализатором устойчивого развития

Искусственный интеллект трансформирует все сферы жизни, расширяя наши возможности и границы. В то же время технологии бросают человечеству новые вызовы, связанные с безопасностью, этикой и защитой окружающей среды. На сегодняшний день каждая нейросеть оставляет за собой большой углеродный след. Однако при грамотном управлении ИИ может принести пользу планете и стать залогом устойчивой экономики будущего. Об этом рассказал научный руководитель Лаборатории алгоритмов и технологий анализа сетевых структур НИУ ВШЭ в Нижнем Новгороде Панос Пардалос в рамках XXV Ясинской (Апрельской) международной научной конференции по проблемам развития экономики и общества.

В Вышке создали собственную MLOps-платформу

Ученые НИУ ВШЭ создали MLOps-платформу SmartMLOps. Она предназначена для исследователей в области искусственного интеллекта, которые хотели бы превратить свое изобретение в полноценный сервис. В будущем на платформе могут быть развернуты ИИ-помощники для упрощения образовательного процесса, оказания медицинской помощи, консультирования и решения многих других задач. Создатели ИИ-технологий смогут получить готовый к работе сервис в течение считанных часов. На суперкомпьютере Вышки этот сервис может быть запущен в несколько кликов.

«От нашей общей работы зависит будущее»: что несет человечеству развитие ИИ

Какие перспективы и вызовы для человечества несет развитие технологий искусственного интеллекта? Как его используют ученые? Каким будет мир, где доминирует ИИ? Эти и другие темы обсудили эксперты на форсайт-сессии «Будущее исследований в сфере искусственного интеллекта», которая прошла в НИУ ВШЭ.

ИИ позволит точно моделировать производительность систем хранения данных

Исследователи факультета компьютерных наук НИУ ВШЭ разработали новый подход к моделированию систем хранения данных на основе генеративных моделей машинного обучения. Он позволяет с высокой точностью предсказывать ключевые характеристики работы таких систем при различных условиях. Результаты опубликованы в журнале IEEE Access.

ИИ в образовании: как преодолеть соблазн готовых решений

Искусственный интеллект уже стал обыденностью для молодежи: как показал опрос, около 87% студентов ведущих вузов используют ИИ в процессе обучения. Большая часть из них отметила, что он помогает им экономить время, при этом они проверяют сделанную ИИ работу. Результаты исследования были представлены на конференции по анализу данных и технологиям ИИ Data Fusion. В ее работе приняли участие научный руководитель НИУ ВШЭ Ярослав Кузьминов и другие эксперты Вышки.

Большинство студентов не верят, что ИИ сможет заменить их на работе

Большинство студентов считают, что ИИ не сможет заменить их на работе в ближайшие десять лет. Низким такой риск называют 27,2% респондентов, 41,5% — крайне маловероятным. Эти оценки были получены НИУ ВШЭ в ходе опроса 4200 студентов в 2025 году. Они приводятся в докладе «Эпоха больших языковых моделей: почему они все еще не профессионалы», подготовленном научным руководителем НИУ ВШЭ Ярославом Кузьминовым и старшим преподавателем кафедры высшей математики НИУ ВШЭ Екатериной Кручинской. Доклад был представлен на XXV Ясинской (Апрельской) международной научной конференции по проблемам развития экономики и общества, которая проходит с 15 по 18 апреля в НИУ ВШЭ.

Точный ИИ-оракул: какие тренды интересуют бизнес

Современные технологии ежедневно меняют мир, автоматизируя бизнес-процессы в различных отраслях. Специалисты НИУ ВШЭ представили масштабный опыт команды iFORA по реализации ИИ-проектов в интересах крупных компаний и органов власти.